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Disclaimer

• Opinions are my own and not the views of my employer

• My opinions are my own

• My work, non is done for my employer

• etc.... you know the deal

• I want a low-power and fast local LLM



Degenda

• RK3588 NPU

• RWKV

• Attempt 1 - Convert from ONNX

• Attempt 2 - offloading MatMul from GGML

• Conclusion



RK3588 NPU



RK3588 NPU
• Fixed pipeline convolution processor

• 3 cores

• 6TOPS @ INT8

• 3TOPS @ FP16

• HW sepc claims INT4/INT16/FP32 capablity. No SDK support

• Really is designed for vision models



RK3588 NPU

• Fixed pipeline

• Non programmible



rknn-toolkit2

• Rockchip proveides RKNN-toolkit2 to compile ONNX

• Then load RKNN using Python or C

• Run the model



rknn-toolkit2
• Compiles ONNX into RKNN

• Compile can crash if graph too complex

• Can only quantize image files as input

• Does not support dynamic input size or graph



MauMul performance
• As of RKNPU 1.5.2, single NPU core only

• Much better then naive or basic tiling

• As fast as OpenBLAS multi-core

• Max K = 2048 @ FP16



RWKV



RWKV - BlinkDL/RWKV-LM
• RNN with Transformer performance

• Easy to implement - MatMul only

• arXiv: 2305.13048



RWKV

• Channel Mix and Time MIx are just 4 matmul

• Output of layer N goes to layer N+1

• ⨁ means element-wise multiplication

• To generate the next token
• Grab the current token. Feed into network
• Also use the intermid state

• No multihead attention

• O(1) context O(N) state size



Much Simpler - images to scale

• Layer in RWKV • Layer in LLaMA2



Transformer Self Attention 

• RKNN cannot do self attention

• Need to multiply 2 computed matrix

• But RKNN needs mat B be ordered

• LLaMA is impossible



Attempt 1 - Convert from ONNX
Fighting with the toolchain



tpoisonooo/llama.onnx
• Like I said, RKNN can’t do attention

• Also contains RWKV model?????

• Layers are split into different ONNX files



Converting to RKNN

• embed and head layer works well!

• Crash on mixing layers

• DieHard did not save it :(

• Other compiler bugs..



ONNX Graph hacking!

• Disable FP16 conversion
• else face compiler bug. RKNN converts anyway

• Walk ONNX graph, find MatMuls

• Split graph

• Send a small, compute heavy graph to RKNN

• Keep the rest in ONNX



It works, but SLOW
• Very slow. ~500ms/token, 430M param

• Expected, too much overhead



Attempt 2 - offloading MatMul from GGML
This actually works



saharNooby/rwkv.cpp
• Used GGML, C library for inference

• GGML runs LLaMA and Whisper

• Support quantizatrion down to 2 bits

• Rockchip fixed their MatMul C API in v1.5.2

• Compiler still crash



GGML hacking

• Like Linux, moving target

• A day to learn how GGML works

• ggml_compute_forward_mul_mat_f16_f32

• Weight fp16, input fp32

• Allocate handles, memory and reorder during init



Works, but...
• Slower then CPU

• CPU: 61ms

• NPU: 83ms/token (load 53/300%)

• CPU load: 50%

• 25% load in kernel



Using multi NPU

• RK3588 has 3 NPU cores

• Matmul can only use 1

• Manually split along the N axis into 2

• Then stich back together

Source: Hulalazz/A-_Guide_-to_Data_Sciecne_from_mathematics/tree/master



Faster..
• Now 76ms/token

• 2 cores, total load 106/300%

• Still slower then CPU



3 NPU cores + 1 CPU core
• 65ms/token

• Close. But not CPU speed yet.

• Unstable. Have bugs

• Sad



Tried every trick in the book
• Vectorize fp32 to fp16 conversion

• Fixing overhead from GGML hack

• Reduce system call

• Use 3 NPU cores instead of 2

• etc...

• Does not help



Benchmarking

• Should have benchmarked first

• What???????

• RKNN is extremely fast

• M = K = N (y axis)



GGML strike back
M = 1, K = 1024, N = 1024, mat B pre-transposed

• GGML: 0.1ms

• RKNN: 0.2ms

• Issue is M = 1. For large M, RKNN is faster

• NPU needs to be better at GEMV

• But GGML is optmized for this



Conclusion 



RK3588 NPU
• As of SDK v1.5.2

• Good MatMul, bad at GEMV

• Driver too high latency/heavy

• Need larger K support to be usible in LLM

• SDK design flaws



If you just want any LLM to run
• Add your accelerator to GGML

• Only need to support MatMul

• Maybe LayerNorm

• Enough to run RWKV

• Or just have a good ONNX compiler



If you just want LLaMA to run
• Add accelerator to GGML

• Must support MatMul without reordering mat B

• Avoid transpose in attention

• Pratially MatMul must support K >= 4096



If you want RWKV to run fast
• Support parallel graph walk

• Unlikely full use HW on matmul K=2048

• Optimize GEMV

• Ideally K >= 8192 for large RWKV

• Hardware support for WKV operation

• Support unconventional and deep op fusion

• Mul → Add → Mul → Add → MatMul

• Store intermid on chip



These should be fusible



Features helpful to GGML
• Accelerator can access Vritual Memory

• Run multiple ops at the same time

• Supports fp32/fp16 multipling with fp16/int8

• Low latency driver/runtime

• Async runtime, able to wait for completion



Thank you



Backup slides



Single NPU core vs 2
GGML + RKNN 1 core

• GGML + RKNN 2 cores



3 NPU cores (split matrix into 4 pieces)
• GGML + 3 NPU cores

• 70ms
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