
Porting RWKV to RK3588
NPU
Martin Chang

Slideshow License: CC BY-SA 4.0 or GPLv3

Disclaimer

• Opinions are my own and not the views of my employer

• My opinions are my own

• My work, non is done for my employer

• etc.... you know the deal

• I want a low-power and fast local LLM

Degenda

• RK3588 NPU

• RWKV

• Attempt 1 - Convert from ONNX

• Attempt 2 - offloading MatMul from GGML

• Conclusion

RK3588 NPU

RK3588 NPU
• Fixed pipeline convolution processor

• 3 cores

• 6TOPS @ INT8

• 3TOPS @ FP16

• HW sepc claims INT4/INT16/FP32 capablity. No SDK support

• Really is designed for vision models

RK3588 NPU

• Fixed pipeline

• Non programmible

rknn-toolkit2

• Rockchip proveides RKNN-toolkit2 to compile ONNX

• Then load RKNN using Python or C

• Run the model

rknn-toolkit2
• Compiles ONNX into RKNN

• Compile can crash if graph too complex

• Can only quantize image files as input

• Does not support dynamic input size or graph

MauMul performance
• As of RKNPU 1.5.2, single NPU core only

• Much better then naive or basic tiling

• As fast as OpenBLAS multi-core

• Max K = 2048 @ FP16

RWKV

RWKV - BlinkDL/RWKV-LM
• RNN with Transformer performance

• Easy to implement - MatMul only

• arXiv: 2305.13048

RWKV

• Channel Mix and Time MIx are just 4 matmul

• Output of layer N goes to layer N+1

• ⨁ means element-wise multiplication

• To generate the next token
• Grab the current token. Feed into network
• Also use the intermid state

• No multihead attention

• O(1) context O(N) state size

Much Simpler - images to scale

• Layer in RWKV • Layer in LLaMA2

Transformer Self Attention

• RKNN cannot do self attention

• Need to multiply 2 computed matrix

• But RKNN needs mat B be ordered

• LLaMA is impossible

Attempt 1 - Convert from ONNX
Fighting with the toolchain

tpoisonooo/llama.onnx
• Like I said, RKNN can’t do attention

• Also contains RWKV model?????

• Layers are split into different ONNX files

Converting to RKNN

• embed and head layer works well!

• Crash on mixing layers

• DieHard did not save it :(

• Other compiler bugs..

ONNX Graph hacking!

• Disable FP16 conversion
• else face compiler bug. RKNN converts anyway

• Walk ONNX graph, find MatMuls

• Split graph

• Send a small, compute heavy graph to RKNN

• Keep the rest in ONNX

It works, but SLOW
• Very slow. ~500ms/token, 430M param

• Expected, too much overhead

Attempt 2 - offloading MatMul from GGML
This actually works

saharNooby/rwkv.cpp
• Used GGML, C library for inference

• GGML runs LLaMA and Whisper

• Support quantizatrion down to 2 bits

• Rockchip fixed their MatMul C API in v1.5.2

• Compiler still crash

GGML hacking

• Like Linux, moving target

• A day to learn how GGML works

• ggml_compute_forward_mul_mat_f16_f32

• Weight fp16, input fp32

• Allocate handles, memory and reorder during init

Works, but...
• Slower then CPU

• CPU: 61ms

• NPU: 83ms/token (load 53/300%)

• CPU load: 50%

• 25% load in kernel

Using multi NPU

• RK3588 has 3 NPU cores

• Matmul can only use 1

• Manually split along the N axis into 2

• Then stich back together

Source: Hulalazz/A-_Guide_-to_Data_Sciecne_from_mathematics/tree/master

Faster..
• Now 76ms/token

• 2 cores, total load 106/300%

• Still slower then CPU

3 NPU cores + 1 CPU core
• 65ms/token

• Close. But not CPU speed yet.

• Unstable. Have bugs

• Sad

Tried every trick in the book
• Vectorize fp32 to fp16 conversion

• Fixing overhead from GGML hack

• Reduce system call

• Use 3 NPU cores instead of 2

• etc...

• Does not help

Benchmarking

• Should have benchmarked first

• What???????

• RKNN is extremely fast

• M = K = N (y axis)

GGML strike back
M = 1, K = 1024, N = 1024, mat B pre-transposed

• GGML: 0.1ms

• RKNN: 0.2ms

• Issue is M = 1. For large M, RKNN is faster

• NPU needs to be better at GEMV

• But GGML is optmized for this

Conclusion

RK3588 NPU
• As of SDK v1.5.2

• Good MatMul, bad at GEMV

• Driver too high latency/heavy

• Need larger K support to be usible in LLM

• SDK design flaws

If you just want any LLM to run
• Add your accelerator to GGML

• Only need to support MatMul

• Maybe LayerNorm

• Enough to run RWKV

• Or just have a good ONNX compiler

If you just want LLaMA to run
• Add accelerator to GGML

• Must support MatMul without reordering mat B

• Avoid transpose in attention

• Pratially MatMul must support K >= 4096

If you want RWKV to run fast
• Support parallel graph walk

• Unlikely full use HW on matmul K=2048

• Optimize GEMV

• Ideally K >= 8192 for large RWKV

• Hardware support for WKV operation

• Support unconventional and deep op fusion

• Mul → Add → Mul → Add → MatMul

• Store intermid on chip

These should be fusible

Features helpful to GGML
• Accelerator can access Vritual Memory

• Run multiple ops at the same time

• Supports fp32/fp16 multipling with fp16/int8

• Low latency driver/runtime

• Async runtime, able to wait for completion

Thank you

Backup slides

Single NPU core vs 2
GGML + RKNN 1 core

• GGML + RKNN 2 cores

3 NPU cores (split matrix into 4 pieces)
• GGML + 3 NPU cores

• 70ms

	Porting RWKV to RK3588 NPU
	Disclaimer
	Degenda
	RK3588 NPU
	RK3588 NPU (2)
	RK3588 NPU (3)
	rknn-toolkit2
	rknn-toolkit2 (2)
	MauMul performance
	RWKV
	RWKV - BlinkDL/RWKV-LM
	RWKV (2)
	Much Simpler - images to scale
	Transformer Self Attention
	Attempt 1 - Convert from ONNX
	tpoisonooo/llama.onnx
	Converting to RKNN
	ONNX Graph hacking!
	It works, but SLOW
	Attempt 2 - offloading MatMul from GGML
	saharNooby/rwkv.cpp
	GGML hacking
	Works, but...
	Using multi NPU
	Faster..
	3 NPU cores + 1 CPU core
	Tried every trick in the book
	Benchmarking
	GGML strike back
	Conclusion
	RK3588 NPU (4)
	If you just want any LLM to run
	If you just want LLaMA to run
	If you want RWKV to run fast
	These should be fusible
	Features helpful to GGML
	Thank you
	Backup slides
	Single NPU core vs 2
	3 NPU cores (split matrix into 4 pieces)

