Porting RWKV to RK3588 NPU Martin Chang

Slideshow License: CC BY-SA 4.0 or GPLv3

Disclaimer

- Opinions are my own and not the views of my employer
- My opinions are my own
- My work, non is done for my employer
- etc.... you know the deal
- I want a low-power and fast local LLM

Degenda

- RK3588 NPU
- RWKV
- Attempt 1 Convert from ONNX
- Attempt 2 offloading MatMul from GGML
- Conclusion

- Fixed pipeline convolution processor
 - 3 cores
 - 6TOPS @ INT8
 - 3TOPS @ FP16
- HW sepc claims INT4/INT16/FP32 capablity. No SDK support
 - Really is designed for vision models

- Fixed pipeline
- Non programmible

rknn-toolkit2

- Rockchip proveides RKNN-toolkit2 to compile ONNX
- Then load RKNN using Python or C
- Run the model

rknn-toolkit2

- Compiles ONNX into RKNN
- Compile can crash if graph too complex
- Can only quantize image files as input
- Does not support dynamic input size or graph

MauMul performance

- As of RKNPU 1.5.2, single NPU core only
 - Much better then naive or basic tiling
 - As fast as OpenBLAS multi-core
 - Max K = 2048 @ FP16

RWKV - BlinkDL/RWKV-LM

- RNN with Transformer performance
 - Easy to implement MatMul only
 - arXiv: 2305.13048

RWKV

- Channel Mix and Time MIx are just 4 matmul
- Output of layer N goes to layer N+1
- \oplus means element-wise multiplication
- To generate the next token
 - Grab the current token. Feed into network
 - Also use the intermid state
- No multihead attention
- O(1) context O(N) state size

Much Simpler - images to scale

• Layer in RWKV

• Layer in LLaMA2

Transformer Self Attention

- RKNN cannot do self attention
- Need to multiply 2 computed matrix
- But RKNN needs mat B be ordered
- LLaMA is impossible

Attempt 1 - Convert from ONNX

Fighting with the toolchain

tpoisonooo/llama.onnx

- Like I said, RKNN can't do attention
 - Also contains RWKV model?????
- Layers are split into different ONNX files

Converting to RKNN

- embed and head layer works well!
- Crash on mixing layers
- DieHard did not save it :(
- Other compiler bugs..

) cd rknn-rwkv > python convert.py /media/2TB/marty/ChatRWKV/models/mixing_0.onnx /media/2TB/marty/ChatRWKV/models/mixing 0.rknn W __init_: rknn-toolkit2 version: 1.5.2+b642f30c W load_onnx: Onnx opset15 is not fully supported, it may cause convert fail, it is recommended to use opset12! Loading : 100% 32/32 [00:00<00:00, 1247.93it/s] W load_onnx: The config.mean_values is None, zeros will be set for input 0! W load_onnx: The config.std_values is None, ones will be set for input 0! W load_onnx: The config.mean_values is None, zeros will be set for input 1! W load_onnx: The config.std_values is None, ones will be set for input 1! W load onnx: The config.mean_values is None, zeros will be set for input 2! W load_onnx: The config.std_values is None, ones will be set for input 2! W load_onnx: The config.mean_values is None, zeros will be set for input 3! W load_onnx: The config.std_values is None, ones will be set for input 3! W load_onnx: The config.mean_values is None, zeros will be set for input 4! W load_onnx: The config.std_values is None, ones will be set for input 4! W load_onnx: The config.mean_values is None, zeros will be set for input 5! W load_onnx: The config.std_values is None, ones will be set for input 5! ONNX loaded. Building RKNN 113493 segmentation fault (core dumped) python convert.py /media/2TB/marty/ChatRWKV/models/mixing_0.onnx [1]

ONNX Graph hacking!

- Disable FP16 conversion
 - else face compiler bug. RKNN converts anyway
- Walk ONNX graph, find MatMuls
- Split graph
- Send a small, compute heavy graph to RKNN
- Keep the rest in ONNX

It works, but SLOW

- Very slow. ~500ms/token, 430M param
 - Expected, too much overhead

```
> python infer.py
I RKNN: [13:44:14.638] RKNN Runtime Information: librknnrt version: 1.5.0 (e6fe0c678@2023-05
I RKNN: [13:44:14.638] RKNN Driver Information: version: 0.8.5
I RKNN: [13:44:14.639] RKNN Model Information: version: 4, toolkit version: 1.5.0+1fa95b5c(c
8, framework name: ONNX, framework layout: NCHW, model inference type: static_shape
Prompt: int main()
{
    int i;
    for(i=0;i<10;i++)
    {
        printf("%d\n",i);
        }
    }
    A:
    You can use the std::cout function to print the values of the variables.
#include <costdlib>
#include <costdlib
#include <cos
```

int main()

Attempt 2 - offloading MatMul from GGML

This actually works

saharNooby/rwkv.cpp

- Used GGML, C library for inference
 - GGML runs LLaMA and Whisper
- Support quantizatrion down to 2 bits
- Rockchip fixed their MatMul C API in v1.5.2
 - Compiler still crash

GGML hacking

- Like Linux, moving target
- A day to learn how GGML works
- ggml_compute_forward_mul_mat_f16_f32
- Weight fp16, input fp32
- Allocate handles, memory and reorder during init

Works, but...

- Slower then CPU
 - CPU: 61ms
- NPU: 83ms/token (load 53/300%)
 - CPU load: 50%
 - 25% load in kernel

Using multi NPU

- RK3588 has 3 NPU cores
- Matmul can only use 1
- Manually split along the N axis into 2
- Then stich back together

Source: Hulalazz/A-_Guide_-to_Data_Sciecne_from_mathematics/tree/master

Faster..

- Now 76ms/token
- 2 cores, total load 106/300%
 - Still slower then CPU

3 NPU cores + 1 CPU core

- 65ms/token
- Close. But not CPU speed yet.
 - Unstable. Have bugs
 - Sad

Tried every trick in the book

- Vectorize fp32 to fp16 conversion
- Fixing overhead from GGML hack
 - Reduce system call
 - Use 3 NPU cores instead of 2
 - etc...
 - Does not help

Benchmarking

- Should have benchmarked first
- What??????
- RKNN is extremely fast
- M = K = N (y axis)

GGML strike back

M = 1, K = 1024, N = 1024, mat B pre-transposed

- GGML: 0.1ms
- RKNN: 0.2ms
- Issue is M = 1. For large M, RKNN is faster
 - NPU needs to be better at GEMV
 - But GGML is optmized for this

Conclusion

- As of SDK v1.5.2
- Good MatMul, bad at GEMV
- Driver too high latency/heavy
- Need larger K support to be usible in LLM
 - SDK design flaws

If you just want any LLM to run

- Add your accelerator to GGML
- Only need to support MatMul
 - Maybe LayerNorm
 - Enough to run RWKV
- Or just have a good ONNX compiler

If you just want LLaMA to run

- Add accelerator to GGML
- Must support MatMul without reordering mat B
 - Avoid transpose in attention
 - Pratially MatMul must support K >= 4096

If you want RWKV to run fast

- Support parallel graph walk
- Unlikely full use HW on matmul K=2048
 - Optimize GEMV
 - Ideally K >= 8192 for large RWKV
 - Hardware support for WKV operation
- Support unconventional and deep op fusion
 - $Mul \rightarrow Add \rightarrow Mul \rightarrow Add \rightarrow MatMul$
 - Store intermid on chip

These should be fusible

Features helpful to GGML

- Accelerator can access Vritual Memory
 - Run multiple ops at the same time
- Supports fp32/fp16 multipling with fp16/int8
 - Low latency driver/runtime
- Async runtime, able to wait for completion

Thank you

Backup slides

Single NPU core vs 2

GGML + RKNN 1 core

Loading 20B tokenizer System info: AVX=0 AVX2=0 AVX512=0 FMA=0 NEON=1 ARM_FMA=1 F16C=0 FP16_VA=1 WASM_SIMD=0 BLAS=1 SSE3=0 VSX=0 Loading RWKV model Processing 185 prompt tokens, may take a while Processed in 17 s, 96 ms per token

Chat initialized! Your name is User. Write something and press Enter. Use \n to add line breaks to your message. > User:

• GGML + RKNN 2 cores

Loading 20B tokenizer System info: AVX=0 AVX2=0 AVX512=0 FMA=0 NEON=1 ARM_FMA=1 F16C=0 FP16_VA=1 WASM_SIMD=0 BLAS=1 SSE3=0 VSX=0 Loading RWKV model Processing 185 prompt tokens, may take a while Processed in 14 s, 76 ms per token

Chat initialized! Your name is User. Write something and press Enter. Use \n to add line breaks to your message. > User:

3 NPU cores (split matrix into 4 pieces)

- GGML + 3 NPU cores
- 70ms

Loading 20B tokenizer System info: AVX=0 AVX2=0 AVX512=0 FMA=0 NEON=1 ARM_FMA=1 F16C=0 FP16_VA=1 WASM_SIMD=0 BLAS=1 SSE3=0 VSX=0 Loading RWKV model Processing 185 prompt tokens, may take a while Processed in 13 s, 70 ms per token

Chat initialized! Your name is User. Write something and press Enter. Use \n to add line breaks to your message. > User: